Stochastic gradient descent for barycenters in Wasserstein space

Author:

Backhoff JulioORCID,Fontbona Joaquin,Rios Gonzalo,Tobar Felipe

Abstract

Abstract We present and study a novel algorithm for the computation of 2-Wasserstein population barycenters of absolutely continuous probability measures on Euclidean space. The proposed method can be seen as a stochastic gradient descent procedure in the 2-Wasserstein space, as well as a manifestation of a law of large numbers therein. The algorithm aims to find a Karcher mean or critical point in this setting, and can be implemented ‘online’, sequentially using independent and identically distributed random measures sampled from the population law. We provide natural sufficient conditions for this algorithm to almost surely converge in the Wasserstein space towards the population barycenter, and we introduce a novel, general condition which ensures uniqueness of Karcher means and, moreover, allows us to obtain explicit, parametric convergence rates for the expected optimality gap. We also study the mini-batch version of this algorithm, and discuss examples of families of population laws to which our method and results can be applied. This work expands and deepens ideas and results introduced in an early version of Backhoff-Veraguas et al. (2022), in which a statistical application (and numerical implementation) of this method is developed in the context of Bayesian learning.

Publisher

Cambridge University Press (CUP)

Reference55 articles.

1. [16] Carlier, G. , Delalande, A. and Merigot, Q. (2022). Quantitative stability of barycenters in the Wasserstein space. Preprint, arXiv:2209.10217.

2. Barycenters in the Wasserstein Space

3. Measurability of optimal transportation and strong coupling of martingale measures

4. An Introduction to Variational Autoencoders

5. Do neural optimal transport solvers work? A continuous Wasserstein-2 benchmark;Korotin;In Advances in Neural Information Processing Systems,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3