Abstract
AbstractThe differential Sylvester equation and its symmetric version, the differential Lyapunov equation, appear in different fields of applied mathematics like control theory, system theory, and model order reduction. The few available straight-forward numerical approaches when applied to large-scale systems come with prohibitively large storage requirements. This shortage motivates us to summarize and explore existing solution formulas for these equations. We develop a unifying approach based on the spectral theorem for normal operators like the Sylvester operator $${\mathcal {S}}(X)=AX+XB$$S(X)=AX+XB and derive a formula for its norm using an induced operator norm based on the spectrum of A and B. In view of numerical approximations, we propose an algorithm that identifies a suitable Krylov subspace using Taylor series and use a projection to approximate the solution. Numerical results for large-scale differential Lyapunov equations are presented in the last sections.
Funder
Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Algebra and Number Theory
Reference37 articles.
1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems Theory. Birkhäuser, Basel (2003)
2. Lecture Notes in Control and Information Sciences;F Amato,2014
3. Advances in Design Control;AC Antoulas,2005
4. Benner, P., Köhler, M., Saak, J.: M.E.S.S.—the matrix equations sparse solvers library. https://www.mpi-magdeburg.mpg.de/projects/mess. Accessed 14 Nov 2019
5. Benner, P., Li, R.C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233(4), 1035–1045 (2009)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献