Minimum Information Variability in Linear Langevin Systems via Model Predictive Control

Author:

Guel-Cortez Adrian-Josue1ORCID,Kim Eun-jin1ORCID,Mehrez Mohamed W.2ORCID

Affiliation:

1. Centre for Fluid and Complex Systems, Coventry University, Priory St, Coventry CV1 5FB, UK

2. Zebra Technologies, 2100 Meadowvale Blvd, Mississauga, ON L5N 7J9, Canada

Abstract

Controlling the time evolution of a probability distribution that describes the dynamics of a given complex system is a challenging problem. Achieving success in this endeavour will benefit multiple practical scenarios, e.g., controlling mesoscopic systems. Here, we propose a control approach blending the model predictive control technique with insights from information geometry theory. Focusing on linear Langevin systems, we use model predictive control online optimisation capabilities to determine the system inputs that minimise deviations from the geodesic of the information length over time, ensuring dynamics with minimum “geometric information variability”. We validate our methodology through numerical experimentation on the Ornstein–Uhlenbeck process and Kramers equation, demonstrating its feasibility. Furthermore, in the context of the Ornstein–Uhlenbeck process, we analyse the impact on the entropy production and entropy rate, providing a physical understanding of the effects of minimum information variability control.

Funder

EPSRC

National Research Foundation of Korea

Publisher

MDPI AG

Reference72 articles.

1. A step-by-step tutorial on active inference and its application to empirical data;Smith;J. Math. Psychol.,2022

2. Peliti, L., and Pigolotti, S. (2021). Stochastic Thermodynamics: An Introduction, Princeton University Press.

3. Bechhoefer, J. (2021). Control Theory for Physicists, Cambridge University Press.

4. Geometric structure and geodesic in a solvable model of nonequilibrium process;Kim;Phys. Rev. E,2016

5. Optical tweezers: Theory and practice;Pesce;Eur. Phys. J. Plus,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3