Abstract
AbstractWe explore the convergence rate of the Kačanov iteration scheme for different models of shear-thinning fluids, including Carreau and power-law type explicit quasi-Newtonian constitutive laws. It is shown that the energy difference contracts along the sequence generated by the iteration. In addition, an a posteriori computable contraction factor is proposed, which improves, on finite-dimensional Galerkin spaces, previously derived bounds on the contraction factor in the context of the power-law model. Significantly, this factor is shown to be independent of the choice of the cut-off parameters whose use was proposed in the literature for the Kačanov iteration applied to the power-law model. Our analytical findings are confirmed by a series of numerical experiments.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Algebra and Number Theory
Reference21 articles.
1. Baranger, J., Najib, K.: Analyse numérique des écoulements quasi-newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58(1), 35–49 (1990)
2. Barrett, J.W., Liu, W.B.: Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law. Numer. Math. 64(4), 433–453 (1993)
3. Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. 16(1), 99–127 (1972)
4. Diening, L., Fornasier, M., Tomasi, R., Wank, M.: A relaxed Kačanov iteration for the $$p$$-poisson problem. Numer. Math. 145(1), 1–34 (2020)
5. Fučík, S., Kratochvíl, A., Nečas, J.: Kačanov-Galerkin method. Comment. Math. Univ. Carolinae 14, 651–659 (1973) (MR 365300)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献