Abstract
The classical Kačanov scheme for the solution of nonlinear variational problems can be interpreted as a fixed point iteration method that updates a given approximation by solving a linear problem in each step. Based on this observation, we introduce a modified Kačanov method, which allows for (adaptive) damping, and, thereby, to derive a new convergence analysis under more general assumptions and for a wider range of applications. For instance, in the specific context of quasilinear diffusion models, our new approach does no longer require a standard monotonicity condition on the nonlinear diffusion coefficient to hold. Moreover, we propose two different adaptive strategies for the practical selection of the damping parameters involved.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献