Spatial Interpolation of Gauge Measured Rainfall Using Compressed Sensing

Author:

Ryu Soorok,Song Joon Jin,Kim Yongku,Jung Sung-Hwa,Do Younghae,Lee GyuWon

Abstract

AbstractIn this work, we suggest new spatial precipitation interpolation schemes using compressed sensing (CS), which is a new framework for signal acquisition and smart sensor design. Using CS, the precipitation maps are recovered in high resolution by obtaining sparse coefficients of radial basis functions(RBFs). Two types of methods are designed according to the construction methods of CS matrix. In the first type, the CS matrix is derived as the product of an m × n (nm) weights matrix of inverse distance weighting (IDW) and an n × n radial basis function (RBF) matrix. The second type of CS matrix consists of an m × n RBF matrix that depends on a few observation vectors and a number of n unknown vectors. The advantage of the proposed CS methods is that it can be represented at a high resolution because it is interpolated based on a large number of bases (or degrees of freedom). This prevents the variance value from being much smaller than the actual value due to interpolation using a few observation scales. To test our CS interpolation schemes, interpolation results were compared with IDW, Ordinary Kriging (OK) and RBF interpolation methods for analytic test function and some actual rainfall data. In the case of an analytic test function, when the proposed method is compared at high resolution, the error from the true value is the smallest. In real rainfall data, comparison with real values is not possible at high resolutions, but the error with the observed data is the smallest in terms of ‘spatial variogram’. In addition, the proposed CS method generates hight resolution data from rainfall cases, showing promising results when identifying peaks.

Funder

Korea Environmental and Technology Institute of the Korea Ministry of Environment

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3