Performance evaluation of varies climate models using observed and regional climate models for the Katar Watershed, Ethiopia

Author:

Yersaw Babur Tesfaye,Chane Mulusew Bezabih,Yitayew Natnael Andualem

Abstract

AbstractClimate models are fundamental tools to estimates the reliable future climate change and its effects on the water resources and agriculture in basins. However, all climate models are not equally performed for all areas. Therefore, determining the most appropriate climate models for a specific study area is essential. The focus of this study was to evaluate the performance of the regional climate models with regard to simulating precipitation, and temperatures at Katar watershed. This study examines the performance of fourteen CORDEX-AFRICA-220 Regional Climate Models (RCMs) for the period of 1984–2005 using statistical metrics such as Pearson correlation coefficient (R), mean absolute error (MAE), root mean squared error (RMSE), and bias. The findings indicated that GERICS-MPI was better performed in representing Areta, and Bokoji station, GERICS-IPSL was better representing in Assela, Ketergenet, and Sagure station, CCCma-CanESM2-AFR22, and RCA4-ICHEC performed relatively better in representing the mean annual observed rainfall at the Kulumsa, and Ogolcho station respectively. However, RCA4-CSIRO performed weakly in estimation of annual rainfall at all stations. RCM model such as GERICS-MPI was relatively better than the others in replicating the annual pattern of the maximum temperature at Areta, Bokoji, and Ketergenet stations. Similarly, GERICS-IPSL were relatively better in replicating the annual maximum temperature at Assela, and Sagure stations, CCCma-CanESM2-AFR22 at Kulumsa station, and RCA4-ICHEC at Ogolcho station performed well in capturing the observed and simulated annual maximum temperature. Better performance was observed on minimum temperature at CCCma-CanESM2-AFR22 at Areta, Assela, and Ketergenet stations, GERICS-MOHE-AFR-22 at Bokoji station, GERICS-MPI at Kulumsa, and Ogolcho stations, RAC4-NOAA-2G at Sagure stations. However, weak performance was observed RCA4-CSIRO at all stations. RCM models of GERICS-MPI, and CCLM4-NCC-AFR-22 performed better than the other RCM models for correction of annual rainfall in Katar watershed. However, poor performance was observed at RCA4-ICHEC model on Katar watershed. The GERICS-MPI model performed well. However, poor performance was observed at RCA4-ICHEC on maximum temperature, and GERICS-NOAA-2M on minimum temperature in Katar watershed.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3