Characteristics of Precipitation Particles Measured by PARSIVEL Disdrometer at a Mountain and a Coastal Site in Korea

Author:

Cha Joo Wan,Yum Seong Soo

Abstract

AbstractThis study analyzed HC (Hydrometeor Classification), rain rate, and DSD (Drop Size Distribution) observed using an optical disdrometer, parsivel, at a mountain (Daegwallyeong, DG) and a coastal site (Mokpo, MP) over 2 years (2010–2011). The HC accuracies of the drizzle, rain, and snow were about 95%, 87%, and 80% respectively. The R2 (coefficient of determination) of the parsivel with TB (Tipping Bucket) rain gauge was 0.91 at MP and 0.96 at DG. The shapes of drizzle and rain DSD observed at DG and MP were similar while the variation in snow DSD was easily influenced by weather condition such as temperature and wind speed. The relatively warm temperature (–5 °C ∼ -0 °C) increased the snow particle number concentration at around 0.6~1 mm diameter and the relatively cold temperature (–15 °C ∼ -10 °C) decreased it above 2 mm diameter. Although wind speed was not a strong factor in snow DSD, larger particles were apt to form in relatively strong wind conditions. Due to different wind directions for the maritime and continental regions, snow particle number density (N(D)) at MP and DG exhibited large differences in terms of snow DSD shape and the number concentration. For instance, in the maritime precipitation, snow DSD shape at MP was broader than that at DG and small-size snow particles were observed at DG more frequently than at MP. In addition, camera-observed snow particle type measurement was carried out at DG in January to March 2010. During the measurement at DG, a mixed type of plate and column was the most frequent and an aggregation of plate type frequently occurred at lower temperatures.

Funder

National Institute of Meteorological Sciences

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3