Atmospheric Correction of True-Color RGB Imagery with Limb Area-Blending Based on 6S and Satellite Image Enhancement Techniques Using Geo-Kompsat-2A Advanced Meteorological Imager Data

Author:

Kim Minsang,Heo Jun-HyungORCID,Sohn Eun-Ha

Abstract

AbstractThis study aims for producing high-quality true-color red-green-blue (RGB) imagery that is useful for interpreting various environmental phenomena, particularly for GK2A. Here we deal with an issue that general atmospheric correction methods for RGB imagery might be breakdown at high solar/viewing zenith angle of GK2A due to erroneous atmospheric path lengths. Additionally, there is another issue about the green band of GK2A of which centroid wavelength (510 nm) is different from that of natural green band (555 nm), resulting in the unrealistic RGB imagery. To overcome those weakness of the RGB imagery for GK2A, we apply the second simulation of the satellite signal in the solar spectrum radiative transfer model look-up table with improved information considering altitude of the reflective surface to reduce the exaggerated atmospheric correction, and a blending technique that mixed the true-color imagery before and after atmospheric correction which produced a naturally expressed true-color image. Consequently, the root mean square error decreased by 0.1–0.5 in accordance with the solar and view zenith angles. The green band signal was modified by combining it with a veggie band to form hybrid green which adjust centroid wavelength of approximately 550 nm. The original composite of true-color RGB imagery is dark; therefore, to brighten the imagery, histogram equalization is conducted to flatten the color distribution. High-temporal-resolution true-color imagery from the GK2A AMI have significant potential to provide scientists and forecasters as a tools to visualize the changing Earth and also expected to intuitively understand the atmospheric phenomenon to the general public.

Funder

Korea Meteorological Administration

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3