Abstract
AbstractDirect nano-scale microanalysis is important for photovoltaic functional thin films to characterize their homogeneity and purity. This demands combining spatial resolution in the micro/nano-scale and sensitivity in the trace-level range, which is at the moment beyond state-of-the-art. As dictated by counting statistics, the reduction of the spot size degrades the detection limit. The utilization of a tabletop XUV laser at λ = 46.9 nm has shown to dramatically improve the ablation efficiency with respect to that of visible lasers, such that ablation spot of 1 μm limits. Li-doped Cu2ZnSn(S,Se)4 (so-called kesterite) thin films were irradiated across 3D ablation arrays for hyperspectral mapping by means of time-of-flight mass spectrometry. The nominal 3D data node lattices were the initialisation perceptron, filled with measured values, and for a detailed supervised learning postprocessing, the node-to-node links were analysed by means of a 2D-kernel covariance algorithm. The latter permitted to obtain robust 3D elemental distribution functions well below the measurement spacing, giving insights into the inhomogeneity and impurities.
Publisher
Springer Science and Business Media LLC
Subject
General Materials Science,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献