Abstract
AbstractPolarons influence decisively the performance of lithium niobate for optical applications. In this work, the formation of (defect) bound polarons in lithium niobate is studied by ab initio molecular dynamics. The calculations show a broad scatter of polaron formation times. Rising temperature increases the share of trajectories with long formation times, which leads to an overall increase of the average formation time with temperature. However, even at elevated temperatures, the average formation time does not exceed the value of 100 femtoseconds, i.e., a value close to the time measured for free, i.e., self-trapped polarons. Analyzing individual trajectories, it is found that the time required for the structural relaxation of the polarons depends sensitively on the excitation of the lithium niobate high-frequency phonon modes and their phase relation.
Funder
Deutsche Forschungsgemeinschaft
Universität Paderborn
Publisher
Springer Science and Business Media LLC
Subject
General Materials Science,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献