Effect of clay/nepheline tailing ratio on the dielectric relaxation and conduction mechanism of the conventional ceramic

Author:

Mahani Ragab M.ORCID,Omara ·Shereen

Abstract

AbstractThe dielectric relaxation and conduction mechanism of 40 wt% nepheline tailing and 60 wt% clay-based ceramic, i.e., the 40/60 ceramic, have been investigated over wide ranges of frequency and temperature, using a broadband dielectric spectrometer (BDS) and then compared with the data recently reported for the 50/50 ceramic. Both 40/60 and 50/50 ceramics were fabricated by grinding the raw materials to be very fine, wet homogenously mixing, drying and finally firing at 1200 °C. Their crystalline phases identified by X-ray diffraction were quartz, hematite, cristobalite, and albite. The 40/60 ceramic of lower glassy phase (nepheline tailing) content displays lower crystallinity than the 50/50 ceramic. Its conduction activation energies (Eac) show values between 0.12 and 0.32 eV, corresponding to the activation energy of oxygen vacancies (Vo++ ~ 0.22 eV). As oxygen vacancies migrate at relatively low operating voltages, the fabricated ceramics would be promising in manufacturing the random access memory (RAM), taking into consideration that the 50/50 ceramic is more useful than the 40/60 ceramic. As a result, nepheline tailing or the glassy phase component may generate more oxygen vacancies and thus enhance the ceramic electrical properties. Finally, the conduction mechanism of both ceramics is described via the correlated barrier hopping (CBH) model.

Funder

Ministry of Scientific Research, Egypt

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3