A systematic investigation into the effect of fibrillar microstructures on the settlement and attachment strength of the bay barnacle Balanus improvisus under natural conditions

Author:

Petersen Dennis S.ORCID,Schultz Marika,Gorb Stanislav N.,Heepe Lars

Abstract

AbstractBarnacles are one of the most prominent hardfouling organisms in the marine environment. They are able to adhere efficiently to nearly every surface underwater including artificial ones like ship hulls and maritime installations. This overgrowing can lead to huge economical costs. Previous studies have shown that specific microstructure types including micropillars can reduce the initial settlement of barnacles. However, it is not clear how adult barnacles are influenced by microstructured surfaces and whether microstructures can even decrease the resulting adhesion strength of them under natural conditions. Therefore, the aim of this study was to systematically investigate the influence of height, diameter, aspect ratio and flexibility of fibrillar microstructures made from polydimethylsiloxane (PDMS) on initial settlement of barnacles as well as the permanent attachment of adult ones. Micropillars with three different heights (50 µm, 100 µm, 200 µm) and two different diameters (25 µm, 50 µm) were exposed to the Baltic Sea for 12 weeks. On a weekly basis, all barnacles (Balanus [= Amphibalanus] improvisus) were tracked individually to calculate the release-to-settlement ratio and to capture the average attachment duration prior to detachment. The results have shown that with increasing height, both initial settlement and fouling density development were reduced. An increase of diameter showed a similar relationship but at a much smaller scale. All tested microstructures decreased the detachment rates of barnacles from the surface compared to a flat PDMS control. However, they appear to complicate the development of a strong adhesive joint in the young adult phase. Some grade of flexibility in the microstructures appeared to increase the fouling retention. The results shed light in the interaction between adult barnacle adhesion and microstructures and may help in the development of new antifouling technologies.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3