Measuring the Impact of Forest Edges on the Highly Arboreal Sahamalaza Sportive Lemur, Lepilemur Sahamalaza, in North-Western Madagascar

Author:

Mandl IsabellaORCID,Rabemananjara Naina,Holderied Marc,Schwitzer Christoph

Abstract

Abstract The progressive fragmentation of forest habitat is causing an increase in edge areas that may differ structurally and in quality from forest interiors. We investigated the impact of edge effects on habitat structure, behaviour, and ecology of the small, nocturnal, and highly arboreal Sahamalaza sportive lemur, Lepilemur sahamalaza. To understand edge effects, we established edge-to-interior gradients using temperature, humidity, and light intensity measurements along transects. From 773 h of behavioural observations on 14 individual sportive lemurs between 2015 and 2016, we compared home range sizes, activity budgets, and habitat use of animals inhabiting the edge area and those in the core forest. We found that microclimatic edge effects penetrated the forest up to 165 m, but that there was no significant edge effect on vegetation; forest vegetation was structurally variable throughout. Individual sportive lemurs living in the edge area used more trees with a diameter at breast height of less than 5 cm but showed no other behavioural differences to individuals inhabiting the core forest. The study shows that this species may not be impacted by edge effects, at least in situations in which vegetation structure is not affected, despite microclimatic differences.

Funder

Primate Society of Great Britain

Explorers Club

Pittsburgh Zoo and PPG Aquarium Sustainability Fund

Primate Conservation

Fresno Chaffee Zoo and Wildlife Conservation Fund

Minnesota Zoo Ulysses S. Seal Conservation Grant

Primate Action Fund

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3