Abstract
AbstractDynamic Controlled Atmosphere-Chlorophyll Fluorescence storage (DCA-CF) uses a fluorescence-based measurement method to detect fermentation in apples (Malus × domestica BORKH.) caused by low-oxygen levels at an early stage. In recent years, it has been observed that individual apples of the same variety and origin can exhibit different fermentation behavior when stored under completely identical conditions. The causes of the different fermentation behavior must be found in order to be able to use DCA storage optimally. This study aimed to find the causes of the different fermentation behaviors of individual apples. Our results show that fruit ripeness can affect the lower oxygen limit (LOL), especially immediately after harvest, when the starch degradation in the fruit is not yet complete. A significant increase in the LOL was observed in ‘Elstar’ (2020: 0.3 kPa, 0.6 kPa, 0.9 kPa; 2021: 0.3 kPa, 0.4 kPa, 0.6 kPa). ‘Braeburn’ also exhibited this behavior regarding the LOL at a lower level. The LOL could not be identified for some of the fruit (varying from 12.5% to 41.7% of the examined apples) previously stored in Ultra Low Oxygen (ULO) storage for 4 months. Also, the chlorophyll content in the apple skin influences the fluorescence measurement method. Within 2 weeks, the chlorophyll content in the apple skin was halved. If the chlorophyll content drops, the reliability of the fluorescence measurement also decreases. It turned out that apples with an Fv/Fm < 0.7 were unsuitable for valid LOL identification.
Funder
Landwirtschaftliche Rentenbank
Hochschule Osnabrück
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献