Recording of Low-Oxygen Stress Response Using Chlorophyll Fluorescence Kinetics in Apple Fruit

Author:

Schlie Tim-PascalORCID,Dierend Werner,Köpcke Dirk,Rath Thomas

Abstract

AbstractLong-term storage of apples (Malus x domestica, Borkh.) is increasingly taking place under Dynamic Controlled Atmosphere (DCA). The oxygen level is lowered to ≤ 1 kPa O2 and the apples are stored just above the Lower Oxygen Limit (LOL). Low oxygen stress during controlled atmosphere storage can lead to fermentation in apples if oxygen levels are too low. Chlorophyll fluorescence can be used to detect low-oxygen stress at an early stage during storage. The currently available non-imaging fluorescence systems often use the minimal fluorescence (Fo) parameter. In contrast, the use of chlorophyll fluorescence kinetics is insufficiently described. Therefore, this study aimed to gain more knowledge about the response of chlorophyll fluorescence kinetics to low oxygen stress in apples using a fluorescence imaging system. The results show that the kinetic fluorescence curves differ under aerobic and fermentation conditions. The fermentative conditions initiated a decrease in fluorescence intensity upon application of the saturation pulses during exposure to actinic light. This result was made at 18 °C and 2 °C ambient temperatures. Interestingly, the kinetic curve changed at 2 °C before fermentation products accumulated in the apples. Non-photochemical quenching (NPQ) decreased under fermentation conditions in the dark phase after relaxation. Upon entering the dark relaxation phase after Kautsky induction, ɸPSII began to increase. Under atmospheric oxygen conditions, ɸPSII reached values of 0.81 to 0.76, while under fermentation, ɸPSII values ranged from 0.57 to 0.44.

Funder

Hochschule Osnabrück

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3