Transfer synthetic over-sampling for class-imbalance learning with limited minority class data
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science,Theoretical Computer Science
Link
http://link.springer.com/content/pdf/10.1007/s11704-018-7182-1.pdf
Reference50 articles.
1. He H, Garcia E A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263–1284
2. Liu X Y, Wu J, Zhou Z H. Exploratory undersampling for classimbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(2): 539–550
3. Cieslak D, Chawla N. Learning decision trees for unbalanced data. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2008, 241–256
4. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(4): 463–484
5. Wang S, Minku L L, Yao X. Resampling-based ensemble methods for online class imbalance learning. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1356–1368
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Covert fault detection with imbalanced data using an improved autoencoder for optical networks;Journal of Optical Communications and Networking;2023-10-30
2. Motion direction prediction through spike timing based on micro Capsnet networks;Science China Technological Sciences;2022-09-15
3. Teachers cooperation: team-knowledge distillation for multiple cross-domain few-shot learning;Frontiers of Computer Science;2022-08-09
4. Deep instance envelope network-based imbalance learning algorithm with multilayer fuzzy C-means clustering and minimum interlayer discrepancy;Applied Soft Computing;2022-07
5. A transfer weighted extreme learning machine for imbalanced classification;International Journal of Intelligent Systems;2022-05-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3