Author:
Cieslak David A.,Chawla Nitesh V.
Publisher
Springer Berlin Heidelberg
Reference25 articles.
1. Japkowicz, N.: Class Imbalance Problem: Significance & Strategies. In: International Conference on Artificial Intelligence (ICAI), pp. 111–117 (2000)
2. Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Training Sets: One-Sided Selection. In: International Conference on Machine Learning (ICML), pp. 179–186 (1997)
3. Batista, G., Prati, R., Monard, M.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. SIGKDD Explorations 6(1), 20–29 (2004)
4. Van Hulse, J., Khoshgoftaar, T., Napolitano, A.: Experimental perspectives on learning from imbalanced data. In: ICML, pp. 935–942 (2007)
5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)
Cited by
174 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献