Deep model-based feature extraction for predicting protein subcellular localizations from bio-images
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science,Theoretical Computer Science
Link
http://link.springer.com/content/pdf/10.1007/s11704-017-6538-2.pdf
Reference40 articles.
1. Chou K C, Shen H B. Cell-PLoc: a package ofWeb servers for predicting subcellular localization of proteins in various organisms. Nature protocols, 2008, 3(2): 153–162
2. Pierleoni A, Martelli P L, Casadio R. MemLoci: predicting subcellular localization of membrane proteins in eukaryotes. Bioinformatics, 2011, 27(9): 1224–1230
3. Xu Y Y, Yang F, Zhang Y, Shen H B. An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Bioinformatics, 2013, 29(16): 2032–2040
4. Hung MC, Link W. Protein localization in disease and therapy. Journal of Cell Science, 2011, 124(20): 3381–3392
5. Xu Y Y, Yang F, Zhang Y, Shen H B. Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Bioinformatics, 2015, 31(7): 1111–1119
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Vislocas: Vision transformers for identifying protein subcellular mis-localization signatures of different cancer subtypes from immunohistochemistry images;Computers in Biology and Medicine;2024-05
2. IDRnet: A Novel Pixel-enlightened Neural Network for Predicting Protein Subcellular Location Based on Interactive Pointwise Attention;Current Bioinformatics;2023-12
3. HAR_Locator: a novel protein subcellular location prediction model of immunohistochemistry images based on hybrid attention modules and residual units;Frontiers in Molecular Biosciences;2023-08-17
4. In silico prediction methods of self-interacting proteins: an empirical and academic survey;Frontiers of Computer Science;2022-10-06
5. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images;Bioinformatics;2022-02-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3