IDRnet: A Novel Pixel-enlightened Neural Network for Predicting Protein Subcellular Location Based on Interactive Pointwise Attention

Author:

Zou Kai1,Wang Ziqian1,Zhu Suwan1,Wang Simeng1,Yang Fan12

Affiliation:

1. School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China

2. Artificial Intelligence and Bioinformation Cognition Laboratory, Jiangxi Science and Technology Normal University, Nanchang, China

Abstract

Background: Traditional approaches to protein subcellular pattern analysis are primarily based on feature concatenation and classifier design. However, highly complex structures and poor performance are prominent shortcomings of these traditional approaches. In this paper, we report the development of an end-to-end pixel-enlightened neural network (IDRnet) based on Interactive Pointwise Attention (IPA) for the prediction of protein subcellular locations using immunohistochemistry (IHC) images. Patch splitting was adopted to reduce interference caused by tissue microarrays, such as bubbles, edges, and blanks. The IPA unit was constructed with a Depthwise and Pointwise convolution (DP) unit, and a pointwise pixel-enlightened algorithm was applied to modify and enrich protein subcellular location information. Methods: IDRnet was able to achieve 97.33% accuracy in single-label IHC patch images and 88.59% subset accuracy in mixed-label IHC patch images, and outperformed other mainstream deep learning models. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) was adopted to visualize the spatial information of proteins in the feature map, which helped to explain and understand the IHC image's abstract features and concrete expression form. Results: IDRnet was able to achieve 97.33% accuracy in single-label IHC patch images and 88.59% subset accuracy in mixed-label IHC patch images, and outperformed other mainstream deep learning models. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) was adopted to visualize the spatial information of proteins in the feature map, which helped to explain and understand the IHC image's abstract features and concrete expression form.

Funder

National Natural Science Foundation of China

Scholastic Youth Talent Jinggang Program of Jiangxi Province

Natural Science Foundation of Jiangxi Province of China

Key Science Foundation of Educational Commission of Jiangxi Province of China

Scholastic Youth Talent Program of Jiangxi Science and Technology Normal University

Scientific and Key Technological Projects of Jiangxi Science and Technology Normal University

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction;Journal of Chemical Information and Modeling;2024-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3