Funder
national natural science foundation of china
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development
Reference28 articles.
1. Crisp, D. J. (2004). the state-of-the-art in ship detection in synthetic aperture radar imagery; No. DSTO-RR-0272; Defence Science and Technology Organisation Salisbury (Australia) Info Sciences Lab: Salisbury, Australia.
2. Dai, H., Du, L., Wang, Y., & Wang, Z. (2016). A modified CFAR algorithm based on object proposals for ship target detection in SAR images [J]. IEEE Geoscience and Remote Sensing Letters, 13, 1925–1929.
3. Ding, J., Chen, B., Liu, H., & Huang, M. (2016). Convolutional neural network with data augmentation for SAR target recognition [J]. IEEE Geoscience and Remote Sensing Letters 1–5.
4. El-Darymli, K., McGuire, P., Power, D., & Moloney, C. (2013). Target detection in synthetic aperture radar imagery: A state-of-the-art survey[J]. Journal of Applied Remote Sensing, 7, 071598.
5. Gao, G. (2011). A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images [J]. IEEE Geoscience and Remote Sensing Letters, 8, 557–561.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献