The short and long-term implications of warming and increased sea water pCO2 on the physiological response of a temperate neogastropod species

Author:

Mardones Maria LoretoORCID,Thatje Sven,Fenberg Phillip B.,Hauton Chris

Abstract

AbstractGlobal average temperatures and seawater pCO2 have rapidly increased due to the oceanic uptake of atmospheric carbon dioxide producing severe consequences for a broad range of species. The impacts on marine ectotherms have been largely reported at short-term scales (i.e. from days to weeks); however, the prolonged effects on long-term processes such as reproduction have received little attention. The gastropod Ocenebra erinaceus is a key predator structuring communities on rocky shores of the French and UK coasts. Even though rocky shore species are regarded as being very tolerant to changes in temperature and pH, many of them are living near their upper tolerance limits, making them susceptible to rapid environmental changes. Here, we report that future mean seawater conditions (RCP8.5, + 3 °C and ~ 900 μatm CO2) do not significantly affect the physiology and molecular response of O. erinaceus adults after 132 days. During the first 50 days, there was a slight impact on oxygen consumption rates and body weight; however, after 95 days of exposure, gastropods fully acclimated to the experimental condition. Despite this, reproduction in females exposed to these future seawater conditions ceased after long-term exposure (~ 10 months). Therefore, in the short-term, O. erinaceus appear to be capable of full compensation; however, in the long-term, they fail to invest in reproduction. We conclude studies should be based on combined results from both short- and long-term effects, to present realistic projections of the ecological consequences of climate warming.

Funder

National Agency for Research and Development Chile

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3