Abstract
AbstractTropicalization is rapidly restructuring subtropical marine communities. A key driver for tropicalization is changes in herbivory pressure that are linked with degrading ecosystem stability. Consequently, subtropical algal beds are being displaced by climate-mediated colonisation of coral communities. This process is thought to be aided by the elevated herbivory resulting from tropicalization, but the relative contribution to herbivory by different taxa is not fully understood. Evaluating herbivory pressure and its effect on coral cover and rugosity across a subtropical latitudinal gradient will help predict how these processes may change with further tropicalization and ocean warming. Herbivory pressure exerted by fishes and urchins across this subtropical latitudinal gradient remains unquantified. Using in-situ feeding observations, we quantify fish and urchin herbivory pressure at seven sites across non-accreting coral communities, and warmer accreting coral reefs in southern Japan. We then relate herbivory pressure to respective fish and urchin community structure and coral cover and rugosity. Urchin herbivory is greater on non-accreting coral communities than on true coral accreting reefs; a result which is reversed for fish herbivory. Overall, herbivory pressure is greater on accreting coral reefs than on coral non-accreting communities, but is dependent on reef characteristics as community structures differ more strongly among reefs than between regions. These factors are linked to coral cover and rugosity that differ between reefs, but not between climatic regions, further emphasising the influence of local factors on the benthic cover and the associated fish and urchin community, and thus herbivory pressure. Our findings provide a foundation for understanding how non-accreting coral communities may respond to ongoing tropicalization, given the fish and invertebrate herbivores they host.
Funder
lord mayor’s 800th anniversary awards trust
winifred violet scott estate
Publisher
Springer Science and Business Media LLC
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献