Taxa‐dependent temporal trends in the abundance and size of sea urchins in subtropical eastern Australia

Author:

McLaren Emily1ORCID,Sommer Brigitte1ORCID,Pandolfi John M.2ORCID,Beger Maria34ORCID,Byrne Maria1ORCID

Affiliation:

1. School of Life and Environmental Sciences, Coastal and Marine Ecosystems Group The University of Sydney Sydney New South Wales Australia

2. School of the Environment The University of Queensland St. Lucia Queensland Australia

3. School of Biology, Faculty of Biological Sciences University of Leeds Leeds UK

4. Centre for Biodiversity and Conservation Science, School of the Environment The University of Queensland St. Lucia Queensland Australia

Abstract

AbstractSubtropical reefs host a dynamic mix of tropical, subtropical, and temperate species that is changing due to shifts in the abundance and distribution of species in response to ocean warming. In these transitional communities, biogeographic affinity is expected to predict changes in species composition, with projected increases of tropical species and declines in cool‐affinity temperate species. Understanding population dynamics of species along biogeographic transition zones is critical, especially for habitat engineers such as sea urchins that can facilitate ecosystem shifts through grazing. We investigated the population dynamics of sea urchins on coral‐associated subtropical reefs at 7 sites in eastern Australia (28.196° S to 30.95° S) over 9 years (2010–2019), a period impacted by warming and heatwaves. Specifically, we investigated the density and population size structure of taxa with temperate (Centrostephanus rodgersii, Phyllacanthus parvispinus), subtropical (Tripneustes australiae) and tropical (Diadema spp.) affinities. Counter to expectation, biogeographic affinity did not explain shifts in species abundances in this region. Although we expected the abundance of tropical species to increase at their cold range boundaries, tropical Diadema species declined across all sites. The subtropical T. australiae also showed declines, while populations of the temperate C. rodgersii were remarkably stable throughout our study period. Our results show that temporal patterns of sea urchin populations in this region cannot be predicted by bio‐geographic affinity alone and contribute critical information about the population dynamics of these important herbivores along this biogeographic transition zone.

Funder

Australian Research Council

Ecological Society of Australia

Centre of Excellence for Coral Reef Studies, Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3