Abstract
AbstractThe effect of microstructure and processing parameters on the mechanical behavior of extruded Mg-Y2x-Znx alloys containing different volume fractions of the long-period stacking order (LPSO) phase is evaluated using in situ diffraction experiments. The Mg-LPSO extruded alloys exhibit a microstructure consisting of a mixture of fine dynamically recrystallized α-Mg grains, highly oriented non-recrystallized coarse α-Mg grains with the basal plane parallel to the extrusion direction, and particles of the LPSO phase elongated in the extrusion direction. The volume fraction of dynamically recrystallized α-Mg grain areas tends to increase as the volume fraction of the LPSO phase and the processing stress increase. In situ diffraction experiments have allowed the understanding of the elastic–plastic behavior of non-DRXed and DRXed grains, and their individual contribution to the macroscopic deformation of magnesium alloys containing LPSO phases and, consequently, the reverse tension–compression asymmetry.
Funder
Ministerio de Economía y Competitividad
Czech Science Foundation
Consejo Superior de Investigaciones Cientificas
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献