Author:
Inoue Akihisa,Kawamura Yoshihito,Matsushita Mitsuhide,Hayashi Kentaro,Koike Junichi
Abstract
A magnesium (Mg) solid solution with a long periodic hexagonal structure was found in a Mg97Zn1Y2 (at.%) alloy in a bulk form prepared by warm extrusion of atomized powders at 573 K. The novel structure has an ABACAB-type six layered packing with lattice parameters of a = 0.322 nm and c = 3 × 0.521 nm. The Mg solid solution has fine grain sizes of 100 to 150 nm and contains 0.78 at.% Zn and 1.82 at.% Y. In addition, cubic Mg24Y5 particles with a size of about 7 nm are dispersed at small volume fractions of less than 10% in the Mg matrix. The specific density (ρ) of the extruded bulk Mg–Zn–Y alloy was 1.84 Mg/m3. The tensile yield strength (σy) and elongation (δ) are 610 MPa and 5%, respectively, at room temperature, and the specific yield strength defined by the ratio of σy to ρ is as high as 3.3 × 105 Nm/kg. High σy values exceeding 400 MPa are also maintained at temperatures up to 473 K. It is noticed that the σy levels are 2.5 to 5 times higher than those for conventional high-strength type Mg-based alloys. The Mg-based alloy also exhibits a high-strain-rate superplasticity with large δ of 700 to 800% at high strain rates of 0.1 to 0.2 s−1 and 623 K. The excellent mechanical properties are due to the combination of the fine grain size, new long periodic hexagonal solid solution containing Y and Zn, and dispersion of fine Mg24Y5 particles. The new Mg-based alloy is expected to be used in many fields.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
355 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献