Machine Learning-Based Hardness Prediction of High-Entropy Alloys for Laser Additive Manufacturing

Author:

Zhu Wenhan,Huo WenyiORCID,Wang Shiqi,Kurpaska Łukasz,Fang Feng,Papanikolaou Stefanos,Kim Hyoung Seop,Jiang Jianqing

Abstract

AbstractHigh-entropy alloys (HEAs) have attracted much attention for laser additive manufacturing, due to their superb mechanical properties. However, their industry application is still hindered by the high entry barriers of design for additive manufacturing and the limited performance library of HEAs. In most machine learning methods used to predict the properties of HEAs, their processing paths are not clearly distinguished. To overcome these issues, in this work, a novel deep neural network architecture is proposed that includes HEA manufacturing routes as input features. The manufacturing routes, i.e., as-cast and laser additive manufactured samples, are transformed into the One-Hot encoder. This makes the samples in the dataset provide better directivity and reduces the prediction error of the model. Data augmentation with conditional generative adversarial networks is employed to obtain some data samples with a distribution similar to that of the original data. These additional added data samples overcome the shortcoming of the limited performance library of HEAs. The results show that the mean absolute error value of the prediction is 44.6, which is about 27% lower than that using traditional neural networks in this work. This delivers a new path to discover chemical compositions suitable for laser additive manufactured HEAs, which is of universal relevance for assisting specific additive manufacturing processes.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

National Natural Science Foundation of China

Jiangsu Province Natural Science Foundation, China

European Union Horizon 2020 Research and Innovation Program

European Regional Development Fund via the Foundation for Polish Science, International Research Agenda PLUS program

National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3