Abstract
AbstractThe miscibility, lattice parameter, and thermophysical properties of (Th0.2U0.8)N and (Th0.5U0.5)N have been investigated. It is shown that additions of thorium nitride (ThN) to uranium nitride (UN) increases the thermophysical performance of the mixed nitride fuel form in comparison to reference UN. In the more dilute limit, additions of ThN serve as a burnable neutronic poison and reduces the change in keff over the lifecycle of the fuel. At higher concentrations, additions of ThN serve as a significant fertile source of 233U. Where appropriate, comparisons to previous work on UN + PuN mixtures are made, as this is a comparable fuel form for potential fast reactor concepts, and a suitable point of contrast in the possible design space afforded by mixed (ThxU1 − x)N fuel forms. The data from this work are the input parameters for finite element modeling of the temperature distribution in a compact reactor. The results of modeling and simulation of this core design are shown for the case of steady-state operation and during double, adjacent heat pipe failure.
Funder
U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development program
National Nuclear Security Administration
Publisher
Springer Science and Business Media LLC
Subject
General Engineering,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献