1. Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M., & Choi, J. G. (2020). LSTM and bat-based RUSBoost approach for electricity theft detection. Applied Sciences, 10(12), 2020.
2. Alaton, C., & Tounquet, F. (2019). Final Report Benchmarking Smart Metering deployment in the EU-28. European Commission DG Energy, Jun. 2019, https://op.europa.eu/en/publication-detail/-/publication/b397ef73-698f-11ea-b735-01aa75ed71a1/language-en.
3. Amin, S., Schwartz, G. A., Cárdenas, A. A., & Sastry, S. S. (2015). Game-theoretic models of electricity theft detection in smart utility networks: Providing new capabilities with advanced metering infrastructure. IEEE Control Systems Magazine, 35(1), 66–81.
4. Anas, M., Javaid, N., Mahmood, A., Raza, S. M., Qasim, U., & Khan, Z. A. (2012). Minimizing electricity theft using smart meters in AMI. Proc. of the 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, IT 2012, 12–14 Nov. 2012, Victoria, BC, Canada.
5. Antmann, P. (2009). Reducing technical and non-technical losses in the power sector. Background paper for the WBG Energy Strategy, Tech. Rep., Washington, DC, USA: The World Bank, 2009.