Equipment- and Time-Constrained Data Acquisition Protocol for Non-Intrusive Appliance Load Monitoring

Author:

Koasidis Konstantinos1ORCID,Marinakis Vangelis1ORCID,Doukas Haris1ORCID,Doumouras Nikolaos1,Karamaneas Anastasios1ORCID,Nikas Alexandros1ORCID

Affiliation:

1. Energy Policy Unit, School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece

Abstract

Energy behaviours will play a key role in decarbonising the building sector but require the provision of tailored insights to assist occupants to reduce their energy use. Energy disaggregation has been proposed to provide such information on the appliance level without needing a smart meter plugged in to each load. However, the use of public datasets with pre-collected data employed for energy disaggregation is associated with limitations regarding its compatibility with random households, while gathering data on the ground still requires extensive, and hitherto under-deployed, equipment and time commitments. Going beyond these two approaches, here, we propose a novel data acquisition protocol based on multiplexing appliances’ signals to create an artificial database for energy disaggregation implementations tailored to each household and dedicated to performing under conditions of time and equipment constraints, requiring that only one smart meter be used and for less than a day. In a case study of a Greek household, we train and compare four common algorithms based on the data gathered through this protocol and perform two tests: an out-of-sample test in the artificially multiplexed signal, and an external test to predict the household’s appliances’ operation based on the time series of a real total consumption signal. We find accurate monitoring of the operation and the power consumption level of high-power appliances, while in low-power appliances the operation is still found to be followed accurately but is also associated with some incorrect triggers. These insights attest to the efficacy of the protocol and its ability to produce meaningful tips for changing energy behaviours even under constraints, while in said conditions, we also find that long short-term memory neural networks consistently outperform all other algorithms, with decision trees closely following.

Funder

European Commission Horizon 2020 Framework Programme, ‘BD4NRG’ Research and Innovation Project

Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Innovation (GSRI) project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3