Abstract
AbstractIn this paper, we develop and study a complex data-driven framework for human resource management enabling (i) academic talent recognition, (ii) researcher performance measurement, and (iii) renewable resource allocation maximizing the total output of a research unit. Suggested resource allocation guarantees the optimal output under strong economic assumptions: the agents are rational, collaborative and have no incentives to behave selfishly. In reality, however, agents often play strategically maximizing their own utilities, e.g., maximizing the resources assigned to them. This strategic behavior is typically mitigated by implementation of performance-driven or uniform resource allocation schemes. Next to the framework presentation, we address the cost of such mitigation.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Computer Science Applications,General Social Sciences
Reference52 articles.
1. Alessandri, G., Borgogni, L., & Truxillo, D. M. (2015). Tracking job performance trajectories over time: A 6-year longitudinal study. European Journal of Work and Organizational Psychology, 24(4), 560–577.
2. Angrave, D., Charlwood, A., Kirkpatrick, I., Lawrence, M., & Stuart, M. (2016). HR and analytics: Why HR is set to fail the big data challenge. Human Resource Management Journal, 26(1), 1–11.
3. Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41, 573–583.
4. Argote, L. (1996). Organizational learning curves: Persistence, transfer and turnover. International Journal of Technology Management, 11(7/8), 759–769.
5. Baard, S. K., Rench, T. A., & Kozlowski, S. W. J. (2014). Performance adaptation: A theoretical integration and review. Journal of Management, 40(1), 48–99.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献