Computation offloading for ground robotic systems communicating over WiFi – an empirical exploration on performance and energy trade-offs

Author:

Ðorđević Milica,Albonico Michel,Lewis Grace A.,Malavolta Ivano,Lago Patricia

Abstract

AbstractContextRobotic systems are known to perform computation-intensive tasks with limited computational resources and battery life. Such systems might benefit from offloading heavy workloads to the Cloud; however, in some cases, this implies high network traffic that degrades performance and energy consumption.GoalIn this study, we aim at evaluating the impact of different computation offloading strategies on performance and energy consumption in the context of autonomous robots.MethodWe conduct two controlled experiments involving a robotic mission based on the Turtlebot3 robot and ROS 1. The mission consists of three tasks that are recurrent in robotics and good candidates for computation offloading in research, namely, SLAM mapping, navigation stack, and object recognition. Each of the tasks is either executed on board or offloaded in a full-factorial experiment design. The obtained measures are then statistically analyzed.ResultsThe results show that offloading the object recognition task causes a more significant decrease in resource utilization and energy consumption than both SLAM mapping and navigation. However, object recognition affects the volume of network traffic significantly to the extent that it can easily cause network congestion.ConclusionsIn the context of our experiments (i.e.,those involving small-scale ground ROS-based mobile robots operating under WiFi networks), offloading object recognition is beneficial in terms of performance and energy consumption. Nevertheless, large network bandwidth needs to be available for object recognition offloading. While the image resolution and frame rate have a significant impact on not only the network traffic but also energy consumption and performance, these parameters need to be carefully set so that the results of this task can be always received in time, which is particularly crucial in real-time systems.

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3