Cross-version defect prediction: use historical data, cross-project data, or both?
Author:
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Software
Link
http://link.springer.com/content/pdf/10.1007/s10664-019-09777-8.pdf
Reference77 articles.
1. Amasaki S (2018) Cross-version defect prediction using cross-project defect prediction approaches. In: Proc. of PROMISE ’18. ACM, pp 32–41
2. Amasaki S, Kawata K, Yokogawa T (2015) Improving cross-project defect prediction methods with data simplification. In: Proc. of SEAA ’15. IEEE, pp 96–103
3. Arisholm E, Briand LC (2006) Predicting fault-prone components in a java legacy system. In: Proc. of ISESE ’06. ACM, pp 1–10
4. Bennin KE, Toda K, Kamei Y, Keung J, Monden A, Ubayashi N (2016) Empirical evaluation of cross-release effort-aware defect prediction models. In: Proc. of QRS ’16. IEEE, pp 214–221
5. Bin Y, Zhou K, Lu H, Zhou Y, Xu B (2017) Training data selection for cross-project defection prediction: which approach is better? In: Proc. of ESEM ’17. IEEE, pp 354–363
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A study on cross-project fault prediction through resampling and feature reduction along with source projects selection;Automated Software Engineering;2024-08-16
2. Unveiling the impact of unchanged modules across versions on the evaluation of within‐project defect prediction models;Journal of Software: Evolution and Process;2024-08-02
3. The untold impact of learning approaches on software fault-proneness predictions: an analysis of temporal aspects;Empirical Software Engineering;2024-06-08
4. Cross-Project Defect Prediction Using Transfer Learning with Long Short-Term Memory Networks;IET Software;2024-03-18
5. On The Effectiveness of One-Class Support Vector Machine in Different Defect Prediction Scenarios;2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2024-03-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3