Application of reinforcement learning for the optimization of clinch joint characteristics

Author:

Zirngibl ChristophORCID,Dworschak Fabian,Schleich Benjamin,Wartzack Sandro

Abstract

AbstractDue to increasing challenges in the area of lightweight design, the demand for time- and cost-effective joining technologies is steadily rising. For this, cold-forming processes provide a fast and environmentally friendly alternative to common joining methods, such as welding. However, to ensure a sufficient applicability in combination with a high reliability of the joint connection, not only the selection of a best-fitting process, but also the suitable dimensioning of the individual joint is crucial. Therefore, few studies already investigated the systematic analysis of clinched joints usually focusing on the optimization of particular tool geometries against shear and tensile loading. This mainly involved the application of a meta-model assisted genetic algorithm to define a solution space including Pareto optima with all efficient allocations. However, if the investigation of new process configurations (e. g. changing materials) is necessary, the earlier generated meta-models often reach their limits which can lead to a significantly loss of estimation quality. Thus, it is mainly required to repeat the time-consuming and resource-intensive data sampling process in combination with the following identification of best-fitting meta-modeling algorithms. As a solution to this problem, the combination of Deep and Reinforcement Learning provides high potentials for the determination of optimal solutions without taking labeled input data into consideration. Therefore, the training of an Agent aims not only to predict quality-relevant joint characteristics, but also at learning a policy of how to obtain them. As a result, the parameters of the deep neural networks are adapted to represent the effects of varying tool configurations on the target variables. This provides the definition of a novel approach to analyze and optimize clinch joint characteristics for certain use-case scenarios.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3