Identification of natural frequencies of machine tools during milling: comparison of the experimental modal analysis and the operational modal analysis

Author:

Berthold JanORCID,Kolouch Martin,Regel Joachim,Dix Martin

Abstract

AbstractModal parameters (natural frequencies, mode shapes and modal damping) help to understand the dynamic behaviour of complex systems like machine tools. There are several approaches for finding the modal parameters. The Experimental Modal Analysis (EMA) has proven to be effective at standstill of a machine tool. The excitation, realized with impulse hammer or shaker, and excited responses at several locations are measured. Alternatively, the Operational Modal Analysis (OMA) can be deployed for finding the modal parameters during operation. Here, responses to excitation resulting from operation are only measured. The modal parameters are mathematically identified from the measured signals in both cases but with different methods. This paper discusses, to what extent both approaches (EMA and OMA) can lead to plausible identification of natural frequencies of a machine tool during milling. Concerning the EMA, attention is paid to capturing the excitation. Process forces can be assumed to be the most significant excitation. However, there are other excitation sources beside the process forces (e.g. drives, hydraulic and pneumatic aggregates), which are considered by this assumption to be a part of disturbances with consequence for the identification of the modal parameters. Regarding the OMA, attention is paid to the fact that the excitation is assumed to be broadband like the white noise. Unfortunately, this assumption does not match the characteristics of a real excitation. This paper contains the identification of natural frequencies of a machine tool during milling within both approaches. The achieved results are compared and discussed.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3