The End of Vagueness: Technological Epistemicism, Surveillance Capitalism, and Explainable Artificial Intelligence

Author:

Kerr Alison DuncanORCID,Scharp KevinORCID

Abstract

AbstractArtificial Intelligence (AI) pervades humanity in 2022, and it is notoriously difficult to understand how certain aspects of it work. There is a movement—Explainable Artificial Intelligence (XAI)—to develop new methods for explaining the behaviours of AI systems. We aim to highlight one important philosophical significance of XAI—it has a role to play in the elimination of vagueness. To show this, consider that the use of AI in what has been labeled surveillance capitalism has resulted in humans quickly gaining the capability to identify and classify most of the occasions in which languages are used. We show that the knowability of this information is incompatible with what a certain theory of vagueness—epistemicism—says about vagueness. We argue that one way the epistemicist could respond to this threat is to claim that this process brought about the end of vagueness. However, we suggest an alternative interpretation, namely that epistemicism is false, but there is a weaker doctrine we dub technological epistemicism, which is the view that vagueness is due to ignorance of linguistic usage, but the ignorance can be overcome. The idea is that knowing more of the relevant data and how to process it enables us to know the semantic values of our words and sentences with higher confidence and precision. Finally, we argue that humans are probably not going to believe what future AI algorithms tell us about the sharp boundaries of our vague words unless the AI involved can be explained in terms understandable by humans. That is, if people are going to accept that AI can tell them about the sharp boundaries of the meanings of their words, then it is going to have to be XAI.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Philosophy

Reference70 articles.

1. Alpaydin, E. (2020). Introduction to machine learning (4th ed.). MIT Press.

2. Altschuler, D., Parsons, T., & Schwarzschild, R. (2019). A Course in semantics. MIT.

3. Bacon, A. (2018). Vagueness and thought. Oxford University Press.

4. Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian theory of mind: Modeling joint belief-desire attribution. In Proceedings of the annual meeting of the cognitive science society (Vol. 33). https://escholarship.org/uc/item/5rk7z59q

5. Ball, D., & Rabern, B. (Eds.). (2018). The science of meaning. Oxford University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3