Transferring Black-Box Decision Making to a White-Box Model

Author:

Žlahtič Bojan1ORCID,Završnik Jernej2345,Blažun Vošner Helena236,Kokol Peter12ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia

2. Community Healthcare Center Dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia

3. Alma Mater Europaea—ECM, 2000 Maribor, Slovenia

4. Science and Research Center Koper, 6000 Koper, Slovenia

5. Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia

6. Faculty of Health and Social Sciences, 2380 Slovenj Gradec, Slovenia

Abstract

In the rapidly evolving realm of artificial intelligence (AI), black-box algorithms have exhibited outstanding performance. However, their opaque nature poses challenges in fields like medicine, where the clarity of the decision-making processes is crucial for ensuring trust. Addressing this need, the study aimed to augment these algorithms with explainable AI (XAI) features to enhance transparency. A novel approach was employed, contrasting the decision-making patterns of black-box and white-box models. Where discrepancies were noted, training data were refined to align a white-box model’s decisions closer to its black-box counterpart. Testing this methodology on three distinct medical datasets revealed consistent correlations between the adapted white-box models and their black-box analogs. Notably, integrating this strategy with established methods like local interpretable model-agnostic explanations (LIMEs) and SHapley Additive exPlanations (SHAPs) further enhanced transparency, underscoring the potential value of decision trees as a favored white-box algorithm in medicine due to its inherent explanatory capabilities. The findings highlight a promising path for the integration of the performance of black-box algorithms with the necessity for transparency in critical decision-making domains.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3