Author:
Behera Paresh Kumar,Rao Srilatha,Popoola Lekan Taofeek,Swamirayachar Sowmyashree Ayachit,AlFalah Mothana Ghazi Kadhim,Kandemirli Fatma,Kodange Shwetha,Prashanth Gopala Krishna,Achalkumar Ammathnadu Sudhakar
Abstract
AbstractThe corrosion process can be seen as a widespread phenomenon, which is both pervasive and unstoppable. This is an undesirable phenomenon that reduces the life of materials and takes away their beauty. Potentiodynamic and electrochemical impedance tests are used to explore the corrosion inhibition abilities of a room temperature columnar liquid crystalline perylene bisimide (PBIO10) on mild steel (MS) samples in 1 M HCl. The inhibitor PBIO10 was demonstrated to be an outstanding corrosion inhibitor, with a maximum inhibition efficiency of 76%. In light of potentiometric polarization results, corrosion inhibition was achieved as the inhibitor getting adsorbed on the metal, and they fit into the category of anodic inhibitors. The protective layer was examined from SEM to confirm the protective coating generated on the MS surface. The increase in contact angle confirms the formation of a uniform layer on the MS surface. Analysis of the optical textures observed in POM, the nature of the mesophase under examination to columnar rectangular (Colr) phase. From the TGA, it was found that PBIO10 exhibits higher thermal stability u to 370 ℃. The density functional theory (DFT) and Monte Carlo simulation approach were used to investigate the relationship between molecular structure and inhibitory efficacy. The thermal behavior of PBIO10 was investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) studies. The phase transition from crystal to LC phase was at first examined with the help of POM observation.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Metals and Alloys
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献