Experimental Investigation on Corrosion Effect on Mechanical Properties of Buried Metal Pipes

Author:

Hou Yingbo1,Lei Deqing1,Li Shujin1,Yang Wei1,Li Chun-Qing2ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China

2. School of Engineering, RMIT University, Melbourne, VIC 3001, Australia

Abstract

Corrosion has been found to be the most predominant cause for failures of buried metal pipes. A review of published literature on pipe corrosion reveals that little research has been undertaken on the effect of corrosion on mechanical properties of pipe materials and almost no research has been conducted on corrosion effect on fracture toughness. The intention of this paper is to present a comprehensive test program designed to investigate the effect of corrosion on mechanical properties of metals in soil. Two types of metals, namely, cast iron and steel, are tested under corrosion in three different environments. A relationship between corrosion and deterioration of mechanical property of metals is developed. It is found in the paper that the more acidic the environment is, the more corrosion the metal undergoes and that the corrosion reduces both the tensile strength and fracture toughness of the metal. The results presented in the paper can contribute to the body of knowledge of corrosion behavior and its effect on mechanical properties of metals in soil environment, which in turn enable more accurate prediction of failures of buried metal pipes.

Funder

Natural Science Foundation of Hubei Province

Publisher

Hindawi Limited

Subject

Process Chemistry and Technology,General Materials Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3