Abstract
AbstractA Nijenhuis operator on a manifold is a (1, 1) tensor whose Nijenhuis torsion vanishes. A Nijenhuis operator $${\mathcal {N}}$$
N
determines a Lie algebroid that knows everything about $${\mathcal {N}}$$
N
. In this sense, a Nijenhuis operator is an infinitesimal object. In this paper, we identify its global counterpart. Namely, we characterize Lie groupoids integrating the Lie algebroid of a Nijenhuis operator. We illustrate our integration result in various examples, including that of a linear Nijenhuis operator on a vector space or, which is equivalent, a pre-Lie algebra structure.
Funder
Università degli Studi di Salerno
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Bolsinov, A.V., Konyaev, A Yu., Matveev, V.S.: Nijenhuis geometry. Adv. Math. 394, 108001 (2022). arXiv:1903.04603
2. Bolsinov, A.V., Konyaev, A. Yu., Matveev, V.S.: Nijenhuis Geometry III: $$gl$$-regular Nijenhuis operators, (2020). arXiv:2007.09506
3. Bolsinov, A.V., Konyaev, AYu., Matveev, V.S.: Applications of Nijenhuis geometry: nondegenerate singular points of Poisson-Nijenhuis structures. Eur. J. Math. (2020). https://doi.org/10.1007/s40879-020-00429-6. arXiv:2001.04851
4. Bolsinov, A.V., Konyaev, A Yu., Matveev, V.S.: Applications of Nijenhuis geometry II: maximal pencils of multihamiltonian structures of hydrodynamic type. Nonlinearity 34, 5136–5162 (2021). arXiv:2009.07802
5. Bolsinov, A.V., Konyaev, A. Yu., Matveev, V.S.: Applications of Nijenhuis geometry III: Frobenius pencils and compatible non-homogeneous Poisson structures, (2021). arXiv:2112.09471