Author:
Bolsinov Alexey V,Konyaev Andrey Yu,Matveev Vladimir S
Abstract
Abstract
We connect two a priori unrelated topics, the theory of geodesically equivalent metrics in differential geometry, and the theory of compatible infinite-dimensional Poisson brackets of hydrodynamic type in mathematical physics. Namely, we prove that a pair of geodesically equivalent metrics such that one is flat produces a pair of such brackets. We construct Casimirs for these brackets and the corresponding commuting flows. There are two ways to produce a large family of compatible Poisson structures from a pair of geodesically equivalent metrics one of which is flat. One of these families is (n + 1)(n + 2)/2 dimensional; we describe it completely and show that it is maximal. Another has dimension ⩽n + 2 and is, in a certain sense, polynomial. We show that a nontrivial polynomial family of compatible Poisson structures of dimension n + 2 is unique and comes from a pair of geodesically equivalent metrics. In addition, we generalize a result of Sinjukov (1961) from constant curvature metrics to arbitrary Einstein metrics.
Funder
Russian Science Foundation
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献