Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Agrachev, A.A.: A Gauß–Bonnet formula for contact sub-Riemannian manifolds. Dokl. Akad. Nauk. 381, 583–585 (2001)
2. Agrachev, A., Bonnard, B., Chyba, M., Kupka, I.: Sub-Riemannian sphere in the Martinet flat case. ESAIM Control Optim. Calc. Var. 2, 377–448 (1997)
3. Agrachev, A., Boscain, U., Charlot, G., Ghezzi, R., Sigalotti, M.: Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 793–807 (2010)
4. Agrachev, A., Boscain, U., Sigalotti, M.: A Gauß–Bonnet like formula on two-dimensional almost-Riemannian manifolds. Discret. Contin. Dyn. Syst. 20(4), 801–822 (2008)
5. Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. Springer, Berlin (2004)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control;PRX Quantum;2021-09-14
2. Index;A Comprehensive Introduction to Sub-Riemannian Geometry;2019-10-31
3. Geometry of Parametrized Curves in Lagrangian Grassmannians Igor Zelenko;A Comprehensive Introduction to Sub-Riemannian Geometry;2019-10-31
4. The Sub-Riemannian Heat Equation;A Comprehensive Introduction to Sub-Riemannian Geometry;2019-10-31
5. Volumes in Sub-Riemannian Geometry;A Comprehensive Introduction to Sub-Riemannian Geometry;2019-10-31