Polynomial and horizontally polynomial functions on Lie groups

Author:

Antonelli GioacchinoORCID,Le Donne Enrico

Abstract

AbstractWe generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset S of the algebra $${\mathfrak {g}}$$ g of left-invariant vector fields on a Lie group $${\mathbb {G}}$$ G and we assume that S Lie generates $${\mathfrak {g}}$$ g . We say that a function $$f:{\mathbb {G}}\rightarrow {\mathbb {R}}$$ f : G R (or more generally a distribution on $${\mathbb {G}}$$ G ) is S-polynomial if for all $$X\in S$$ X S there exists $$k\in {\mathbb {N}}$$ k N such that the iterated derivative $$X^k f$$ X k f is zero in the sense of distributions. First, we show that all S-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent k in the previous definition is independent on $$X\in S$$ X S , they form a finite-dimensional vector space. Second, if $${\mathbb {G}}$$ G is connected and nilpotent, we show that S-polynomial functions are polynomial functions in the sense of Leibman. The same result may not be true for non-nilpotent groups. Finally, we show that in connected nilpotent Lie groups, being polynomial in the sense of Leibman, being a polynomial in exponential chart, and the vanishing of mixed derivatives of some fixed degree along directions of $${\mathfrak {g}}$$ g are equivalent notions.

Funder

European Research Council

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference34 articles.

1. Agrachev, A., Barilari, D., Boscain, U.: A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2019)

2. Bellettini, C., Le Donne, E.: Sets with constant normal in Carnot groups: properties and examples. Accepted at Commentarii Mathematici Helvetici. Preprint on arXiv, arXiv:1910.12117 (2019)

3. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for their Sub-Laplacians. Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, New York, (2007)

4. Bruno, T.: Homogeneous algebras via heat kernel estimates. Preprint on arXiv, arXiv:2102.11613 (2021)

5. Bruno, T., Calzi, M.: Schrödinger operators on Lie groups with purely discrete spectrum. Preprint on arXiv, arXiv:2108.01953 (2021)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Horizontally Affine Functions on Step-2 Carnot Algebras;The Journal of Geometric Analysis;2023-09-09

2. Jet spaces over Carnot groups;Revista Matemática Iberoamericana;2023-07-24

3. Precisely monotone sets in step-2 rank-3 Carnot algebras;Mathematische Zeitschrift;2023-02-02

4. Schrödinger operators on Lie groups with purely discrete spectrum;Advances in Mathematics;2022-08

5. Homogeneous algebras via heat kernel estimates;Transactions of the American Mathematical Society;2022-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3