Linkage between cross-equatorial potential vorticity flux and surface air temperature over the mid–high latitudes of Eurasia during boreal spring

Author:

Sheng Chen,Wu Guoxiong,He BianORCID,Liu Yimin,Ma Tingting

Abstract

AbstractThe source of potential vorticity (PV) for the global domain is located at the Earth’s surface. PV in one hemisphere can exchange with the other through cross-equatorial PV flux (CEPVF). This study investigates the features of the climatic mean CEPVF, the connection in interannual CEPVF with the surface thermal characteristics, and the associated mechanism. Results indicate that the process of positive (negative) PV carried by a northerly (southerly) wind leads to the climatologically overwhelming negative CEPVF over almost the entire equatorial cross-section, while the change of the zonal circulation over the equator is predominately responsible for CEPVF variation. By introducing the concept of “PV circulation” (PVC), it is demonstrated that the interannual CEPVF over the equator is closely linked to the notable uniform anomalies of spring cold surface air temperature (SAT) over the mid–high latitudes of Eurasia by virtue of the PVC, the PV-θ mechanism, and the surface positive feedback. Further analysis reveals that equatorial sea surface temperature (SST) forcing, such as the El Niño–Southern Oscillation and tropical South Atlantic uniform SST, can directly drive anomalous CEPVF by changing the zonal circulation over the equator, thereby influencing SAT in the Northern Hemisphere. All results indicate that the equilibrium linkage between CEPVF and extratropical SAT is mainly a manifestation of the response of extratropical SAT to tropical forcing by virtue of PVC, and that the perspective of PVC can provide a reasonably direct and simple connection of the circulation and climate between the tropics and the mid–high latitudes.

Funder

National Natural Science Foundation of China

Key Research Program of Frontier Sciences of the Chinese Academy of Sciences

Guangdong Major Project of Basic and Applied Basic Research

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3