Impacts of the Surface Potential Vorticity Circulation over the Tibetan Plateau on the East Asian Monsoon in July

Author:

Liu Yimin12ORCID,Luan Lulu1,Wu Guoxiong12,Ma Tingting1

Affiliation:

1. State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Based on the definition of potential vorticity substance (W) and its equation, an index “iPV” representing the leading mode of the surface potential vorticity circulation (PVC) over the Tibetan Plateau is defined to characterize the orographic potential vorticity (PV) forcing on the atmospheric general circulation. The relationships between the iPV index and the East Asian monsoon in July, as well as the Silk Road pattern in Eurasia, are investigated on an interannual time scale. Results show that the iPV in July is closely related to the interannual variability of the East Asian monsoon. Corresponding to the positive phase of iPV with negative (positive) PVC over the north (south) of the plateau, strong positive PV anomalies and westerly flows develop in the troposphere over the plateau. Consequently, in the downstream region, the zonal PV advection increases with height just above the Jianghuai Meiyu front, which is conducive to the generation of upward movement. Over the East Asian area, the upper troposphere is controlled by the eastward shifted South Asian High. In the lower troposphere, the southwesterly flow anomaly on the northwestern side of the strengthened western Pacific subtropical high transports abundant water vapor to the north, forming a convergence in the Jianghuai area, leading to the formation of large-scale precipitation along the Meiyu front. Results from partial correlation analysis also demonstrate that the link between the variability of the East Asian monsoon in July and the plateau PV forcing is affected very little by the Silk Road pattern, whereas the plateau PV forcing plays a key “bridging” role in the influence of the Silk Road pattern on the East Asian monsoon.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3