Orbitally forced and internal changes in West African rainfall interannual-to-decadal variability for the last 6000 years

Author:

Crétat JulienORCID,Harrison Sandy P.,Braconnot Pascale,d’Agostino Roberta,Jungclaus Johann,Lohmann Gerrit,Shi Xiaoxu,Marti Olivier

Abstract

AbstractRecent variability in West African monsoon rainfall (WAMR) has been shown to be influenced by multiple ocean–atmosphere modes, including the El Niño Southern Oscillation, Atlantic Multidecadal Oscillation and the Interdecadal Pacific Oscillation. How these modes will change in response to long term forcing is less well understood. Here we use four transient simulations driven by changes in orbital forcing and greenhouse gas concentrations over the past 6000 years to examine the relationship between West African monsoon rainfall multiscale variability and changes in the modes associated with this variability. All four models show a near linear decline in monsoon rainfall over the past 6000 years in response to the gradual weakening of the interhemispheric gradient in sea surface temperatures. The only indices that show a long-term trend are those associated with the strengthening of the El Niño Southern Oscillation from the mid-Holocene onwards. At the interannual-to-decadal timescale, WAMR variability is largely influenced by Pacific–Atlantic – Mediterranean Sea teleconnections in all simulations; the exact configurations are model sensitive. The WAMR interannual-to-decadal variability depicts marked multi-centennial oscillations, with La Niña/negative Pacific Decadal Oscillation and a weakening and/or poleward shift of subtropical high-pressure systems over the Atlantic favoring wet WAMR anomalies. The WAMR interannual-to-decadal variability also depicts an overall decreasing trend throughout the Holocene that is consistent among the simulations. This decreasing trend relates to changes in the North Atlantic and Gulf of Guinea Sea Surface Temperature variability.

Funder

Agence Nationale de la Recherche

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3