Global precipitation hindcast quality assessment of the Subseasonal to Seasonal (S2S) prediction project models
Author:
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science
Link
http://link.springer.com/content/pdf/10.1007/s00382-018-4457-z.pdf
Reference83 articles.
1. Ambrizzi T, Hoskins BJ, Hsu HH (1995) Rossby wave propagation and teleconnection patterns in the austral winter. J Atmos Sci 52:3661–3672
2. Ardilouze C, Batté L, Déqué M (2017) Subseasonal-to-seasonal (S2S) forecasts with CNRM-CM: a case study on the July 2015 West-European heat wave. Adv Sci Res 14:115–121
3. Baggett CF, Barnes EA, Maloney ED, Mundhenk BD (2017) Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys Res Lett 44:7528–7536
4. Baldwin MP, Stephenson DB, Thompson DWJ, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and extended-range weather forecasts. Science 301:636–640
5. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126
Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving sub-seasonal extreme precipitation forecasts over China through a hybrid statistical-dynamical framework;Journal of Hydrology;2024-11
2. Advancing sub-seasonal to seasonal multi-model ensemble precipitation prediction in east asia: Deep learning-based post-processing for improved accuracy;Heliyon;2024-08
3. Listening to Stakeholders III: Potential Users Evaluate Product Content and Design for Subseasonal Extreme Precipitation Forecasts;Bulletin of the American Meteorological Society;2024-08
4. A machine learning model that outperforms conventional global subseasonal forecast models;Nature Communications;2024-07-30
5. Subseasonal Forecast Skill of Evaporative Demand, Soil Moisture, and Flash Drought Onset from Two Dynamic Models over the Contiguous United States;Journal of Hydrometeorology;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3