Abstract
AbstractThe Tibetan Plateau (TP), also called the Third Pole, is considered to be “the world water tower”. The northwestern TP (NWTP), which has an average elevation higher than 4800 m, is an arid region where the summer precipitation is largely overestimated by the ERA5 global reanalysis product. We hypothesize that this wet bias is mainly caused by unrealistic lower-level winds that trigger strong convection over the region; it can be reduced by using a high-resolution regional climate model with a large domain that allows realistically representing interactions between the Westerlies and Asian summer monsoons. Here, downscaling using the Weather Research and Forecasting (WRF) model driven by ERA5 was conducted with a large domain (8°‒50° N, 65°‒125° E) at 9 km for the period 1979‒2019 (WRF9km). Precipitation values from WRF9km and ERA5 were evaluated against satellite observations; compared with ERA5, WRF9km captured the climatological summer precipitation over the NWTP with a much-reduced wet bias. The ERA5 overestimation is mainly caused by excessive convective precipitation, likely linked to strong vertical motions over the NWTP induced by an overestimated lower-level southerly wind.
Funder
Strategic Priority Research Program of the Chinese Academy of Sciences
Swedish Foundation for International Cooperation in Research and Higher Education
University of Gothenburg
Publisher
Springer Science and Business Media LLC
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献