Mean flow and eddy summer moisture transport over East Asia in reanalysis data and a regional climate simulation

Author:

Kukulies JuliaORCID,Li Wenhong,Chen Deliang

Abstract

AbstractUnderstanding the impact of atmospheric variability on climatological mean moisture transport is crucial because moisture transport determines continental water availability as well as convective organization and resulting precipitation. Here, we analyze the mean flow and eddy components of summer moisture transport in the downwind of the Tibetan Plateau (TP), a region that is characterized by interactions between monsoon systems, extratropical circulation, and mountainous weather systems. Using 40 years of ERA5 reanalysis data and a regional WRF simulation, we determine the absolute and relative contributions of mean flow and eddy moisture transport from multi-daily to sub-daily scales. We also link these components to large-scale circulation indices, precipitation, evaporation, and mesoscale convective systems (MCSs). The results show that the largest contributions of eddies to the climatological mean moisture transport are found in the immediate downwind region of the TP. Half of the total eddy transport downwind of the TP is due to multi-daily eddy transport and the other half is due to daily to sub-daily eddy transport. Regional precipitation anomalies are dominated by the mean flow component of southerly moisture influxes which in turn are positively correlated with different South Asian summer monsoon indices and negatively correlated with the West Northern Pacific monsoon index. The eddy transport from the south is positively correlated with a lower jet latitude but does not show any significant correlations with precipitation or MCS activity, likely due to the dominant role of the mean flow moisture transport. While the relative contributions of eddies to the climatological mean moisture transport are similar in ERA5 and WRF, the correlations between moisture transport components and large-scale circulation indices are generally weaker in WRF. This suggests that the dynamical downscaling does not significantly change the role of eddy moisture transport averaged for the region, but it resolves processes that decouple the moisture transport from its large-scale forcing.

Funder

University of Gothenburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3