Mechanisms of early and late summer precipitation in Southwest China: dynamic and thermodynamic processes

Author:

Sun Xiaoting,Li QingquanORCID,Wu Qingyuan

Abstract

AbstractThis study investigates dynamic and thermodynamic components of moisture flux convergence in Southwest China (SW-MFC) and their underlying physical mechanisms during early and late summer. Using precipitation observation and CRA-40 reanalysis datasets from 1979 to 2023, the results show that both dynamic and thermodynamic processes modulate the SW-MFC in early summer (May-June), with dynamics playing a pivotal role. In contrast, the precipitation anomaly in late summer (July-August) is predominantly driven by the dynamic factors. Meanwhile, the large-scale circulation over the northern Indian Peninsula significantly modulates the SW-MFC. In early summer, anomalous convection around the Maritime Continent with the tripole sea surface temperature (SST) mode in the tropical Indo-Pacific can trigger the formation of “double ring” vertical zonal circulation cells. A large-scale westerly anomaly at the lower troposphere over the northern Arabian Sea foster cyclone strengthening over the northern Indian Peninsula, enhancing southerly moisture transport and increasing precipitation over Southwest China. During the late summer, large-scale dipole SST pattern between the subtropical central-eastern Pacific and the Indo-Pacific warm pool generates significant easterly anomalies towards the Maritime Continent. The SST gradient stimulates an extensive anticyclonic shear zone over the western equatorial Pacific, with an intensified low-pressure zone to its north. This atmospheric pattern over Southwest China and Indian Peninsula can form a vertical circulation circle that largely intensifies widespread precipitation. Numerical model experiments can reproduce the mechanisms of tropical Indo-Pacific joint effects on the Southwest precipitation in both early and late summer, providing a theoretical basis for understanding and forecasting summer precipitation over Southwest China.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program of China

Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province

National Key Research and Development Program of China

State Key Laboratory of Infectious Disease Prevention and Control

Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3